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This paper is a contribution to the theory of Fourier transform estimates related to
the light cone I' = {¢€ € R"*! . ¢, = \/Z;;l €512}, There has been quite a bit of recent
work on such estimates (see for example [1], [8], [10], [11], [2], [18], [6], [17], [20], [16]) but
a number of apparently deeper questions remain open.

The best known are the so-called cone multiplier and local smoothing conjectures,
both of which would follow (cf. [10] and [11]) from a sharp estimate by the associated
square function,

VedCe: || fllp < CeN[ISS1, (1)

Here p = 4 in the case of the 2 + 1 dimensional problem, which is the case that we will
consider in this paper. Also f is a function with supp f C I'n(1), where I'y(1) is the
points which are at distance about N from the origin and at distance < 1 from I'. Sf
corresponds to a decomposition of I' into sectors of angular width N 3

(Sf(@)? =) lfe()

where fo = Zg * f, with Z¢ having Fourier support near the part of I'y (1) corresponding
to an arc of the circle © of angular length NV ~2 and the sum runs over a covering by such
arcs.

We do not know how to prove (1). However, we can prove a related estimate with a
high value of p, which has some of the same consequences that (1) would have.

Let us define )
1 £ lp mic = (Z ||fe||£>
5)
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with the obvious modification when p = co. Here p > 2; it is then clear that || f]|, mic <

1S/

Theorem 1 The following estimate is valid if p > 74 and f is supported in T ~(1).

VedCe: ||fllp < CeNONZ 2| fllpmic (2)

We remark that for the indicated range of p this estimate is clearly sharp except for
issues connected with the N€ factor. Further, that the main point is to obtain some value
of p < oo for which (2) holds. We have tried to arrange the argument in a reasonably
efficient way, but improvements in the value of p should certainly be possible.

It is easy to see that (2) fails when p is below the Strichartz exponent 6; for this,
consider a function f such that |fg| is approximately equal to 1 on a proportional subset
of the unit cube for each ©. It is therefore natural to conjecture that p > 6 is the correct
range.

Like other estimates on high L? spaces, Theorem 1 means that we understand the
“large” values of f, but only them. Thus we record the following (immediate) corollary:

Corollary 1 Assume that f € L2, f is supported in Ty (1) and || f]jcomic < 1. Then

{If] > N7} < C,N~2H0| 7|12 (3)
where 6(n) — 0 as n — 0.

In the limit as 7 — 0 this estimate may easily be seen to be sharp and it is considerably
stronger than what can be obtained from any of the various results in the literature (cf.
2], [18], [17], [6], [20]). If one weakens (3) a bit by replacing || f||3 with ||Sf||], then
the resulting estimate would be a consequence of the conjectured (1), but the known
partial results on (1) lose a factor of Nz [8] or slightly less than that ([2], [17], [20]). We
remark here that the assumption || f||comic < 1 is just a normalization and scales out if
one replaces || f]|3 with ||Sf]|3.

Theorem 1 easily implies the optimal L™ local smoothing bound, and a corresponding
result for the cone multipliers. Let || f], be the inhomogeneous Sobolev norm with a
derivatives in L*.



Corollary 2 (i) If u is a solution of Ou = 0, u(-,0) = f, %(-, 0) = g in 2+ 1 dimensions
then
||u||Lp(R2><[1’2]) < Cpa (Hf”pﬂ + ||g||p704—1)

ifp>74anda>%—§.

(ii) Let p1 be a C§° function of one variable supported in the interval (1,2), and let
p2 be a C§° function of two variables. Then the cone multiplier operators 7, defined
via T, f = maf, where mo(x) = |3 — /23 + 23|*p1(x3) p2(21, 22), are bounded on L7 if
p>74anda>%—2

>
In connection with the cone multiplier statement, we note that the usual argument
([5] and [15], p. 422) which proves the optimal Bochner-Riesz estimate on L? assuming an
L? restriction theorem does not work as easily for the cone. Nevertheless it seems possible
that bounds like Corollary 2(ii) could be proved without going through Theorem 1.
Theorem 1 also implies the following result, answering a question which the author
heard of some time ago from P. Mattila.

Corollary 3 Let E be a set in R? x R with Hausdorff dimension greater than 1, and let
F be a set in R? with the property that if (x,t) € E then the one dimensional Lebesgue
outer measure of C'(x,t) N E is nonzero. Then I’ cannot be of two dimensional Lebesgue
measure Zzero.

Part of the point here is that no set theoretic restrictions are needed, in contrast to
many related situations where one has to be more careful. The reason for this is that
Theorem 1 is a measure estimate and makes no reference to any notion of dimension. On
the other hand, the special case of Corollary 3

(%) If F is a compact set in R? and there is a compact set £ C R* with Hausdorff
dimension greater than 1 such that F' contains some circle centered at each point of F,
then F' has positive measure

is new also, although it appears to us that () could be proved without going through the
entire proof of Theorem 1. Assertion (%) with “positive measure” replaced by “Hausdorff
dimension two” follows from [18], but the combinatorial techniques from [3] used there
are known to be hard to improve. On the other hand, it has been known for a while
(Schlag [13]) that (x) would be a consequence of (1). The argument can be set up so
that it only needs the large values estimate of Corollary 1, and it proves Corollary 3 as
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well. In the case where F has Hausdorff dimension greater than % — ¢ for suitably small

€, (*) is a consequence of the abovementioned partial results on (1), and when dimfE > 2
a geometric proof was given by Mitsis [9)].

In addition, we give a further corollary (see Proposition 6.1 and the subsequent dis-
cussion) which is essentially a refinement of Corollary 3 to an LP estimate.

We now give a brief sketch of the proof of Theorem 1. It involves a combination of
incidence geometry and L? arguments.

In section 1 we consider a certain “continuum incidence problem” involving approx-
imately tangent pairs of circles and prove a bound in this problem which generalizes a
result in [18]. The proof given here is also a lot simpler than the proof in [18], although
the same techniques are used (roughly a combination of those in [8] and [3]), so this may
be of some independent interest.

To motivate the subsequent sections we recall a certain general principle applicable to
many problems in this area. Namely, one often wants to use an induction argument of the
following type: let X(/N) be an estimate making reference to functions living on Fourier
scale IV, for present purposes the estimate of Theorem 1. Suppose it has been proved on
scale N3. If f lives on Fourier scale N then apply X (N %) to the part of f whose Fourier
transform lives on a given sector of the cone of angular width N _i, which can be rescaled
using Lorentz transformations so that it becomes a portion of I' 1. The resulting question
of controlling interactions between different such sectors can be localized in z-space to
N—3-discs, so after dilating by N > one can apply X (N %) again.

In practice this logic does not work very well, essentially because solutions of the
differential inequality |¢| < ¢* can blow up in finite time so that applying the inductive
hypothesis twice leads to problems. However it would be a different matter it instead one
could apply the inductive hypothesis once on scale N > and once on a significantly smaller
scale, let us say N 2(1=€0)  Ag it turns out, in our context it is possible to do this.

Namely, in section 2 we put the result proved in section 1 into a dual form where
it becomes a property of light rays instead of circles. In section 3 we obtain from this
a certain “localization” property of functions with Fourier support near the light cone
(related to the “two ends” condition used in several recent related papers) which allows
us to change scales from N 2 to N2(1=€) ynder certain circumstances. Once we have this
property, it is possible to set up an induction argument which proves Theorem 1. This
is done in section 5; section 4 is the proofs of some lemmas. Other than the localization
property, we need only uncertainty principle type L? techniques. In particular, we use
neither stationary phase nor L* orthogonality.



Finally, section 6 is the proofs of the corollaries.
A few remarks concerning generalizations to higher dimensions. The analogue of
Theorem 1 in n + 1 dimensions is

n-l_n
1fllp < CeN N7 7% fllpie (4)
with the natural definition of || f||pmic, and the possible range of validity is p > 2042,

Estimate (4) is substantially easier to prove in higher dimensions, and much better values
of p (of the form 2+ O(+) as n — o0o) can be obtained; this will be done in a forthcoming
paper by H. Farag and the author [4]. At present it is unclear to us whether or not one
should be able to obtain a sharp result.

One could also consider the analogous question for spheres instead of cones. However,
it is possible here to “go down” from estimate (4) for the cone in R"* to the corresponding
estimate for the sphere in R", so the case of spheres may be of less interest.

List of notation
We give here only notation which will be used throughout the paper.

A t-cube is a cube in R? of side t whose vertices belong to tZ?; thus any two are identical

or disjoint. We will always tacitly assume that ¢ is dyadic; thus the grids may be taken

to be nested.

xg: indicator function of the set F.

|E|: Lebesgue measure or cardinality of £ depending on the context.

E5(X): d-entropy of X, i.e. maximum possible cardinality for a d-separated subset of X.
We fix once and for all a small constant ¢y > 0 and then a large constant M.

é(z): the function (1 + |z|?)~%

agr: an affine map taking the unit cube centered at 0 to the rectangle R.

¢Rr: the composition ¢ o al_%l



z): A function mapping R?> — R such that
pping

1. ¢ = 1% where 7 is supported in a small disc centered at 0.
2. 1 # 0 on a large cube centered at the origin.
3. The Z® translations of ¢ form a partition of unity.

1g: the composition 1 o al_zl.

I: the forward light cone {¢€ € R? : & = /& + €2}
['y: the cone segment I' N {|¢] € [§,2N]}.

In(1): the I-neighborhood of the cone segment I'y. Similarly we let I'y(C') be the
C-neighborhood of the cone segment {¢ : [£] € [, 29 N]}.

For fixed N, we take a partition of unity subordinate to a covering of the circle by arcs
© of length about N ~7, and use this to form a partition of unity ye on I'y(C) in the
natural way. We let Z¢ be a function whose Fourier transform coincides with yg when
|| ~ N. If the support of f is contained in I'y(C) we define

1
p
£ lpmic = (Z 126 * f||§>
o

for p < oo and
[ £lloemie = sup [[Z6  flloc

1. A bound for circle tangencies As was mentioned in the introduction, this section
of the paper is essentially a generalization and simplification of the result of [18]. One can
obtain the result of [18] by specializing Lemma 1.4 below to the case of families of circles
with d-separated radii and then using fairly standard arguments.

In this section we use the notation c(z,r) for the circle with center z and radius r,
and we will always assume that x is in the disc centered at the origin with radius %
and that % <r <2 If ¢ = c(x;,r;) then we define d(c1, o) = |21 — 22| + |11 — 12,

A(cy,ca) = ||z1 — 22| — |1 — r2|. We fix large constants Cy, Cs, C5, Cy, which will be



specified below, and are chosen in the indicated order. We also fix numbers 6 and ¢ with
0 small compared with ¢. A d,t-rectangle is by definition the d-neighborhood of an arc of

length \/§ on some circle. We say that a circle ¢ is tangent to a 9, t-rectangle R if the
C10-neighborhood of ¢ contains R. Two 9, t-rectangles are close if there is a 24, t-rectangle
which contains them both and comparable if there is a Cyd,t-rectangle which contains
them both; if they are not close they are nonclose and if they are not comparable they

are incomparable.

Lemma 1.1 If Ry and Ry are incomparable (4, t)-rectangles both tangent to a common

circle ¢, and if p; € R;, then |p; — po| > Og\/g.

Proof Both R; and Ry are contained in the Cjdé-neighborhood of c. If they con-
tain points with |p; — po| < 03\/§ then it follows that they are contained in the C16-

neighborhood of an arc of ¢ of length < (C5 + 2)\/§, so we can take Cy = max(Ch, (C5 +
2)?). O

The definitions of “close” and “comparable” are almost the same, but for technical
reasons we need both of them. The distinction between the two is insignificant because
of the following

Lemma 1.2 For any constant A there is a constant C'(A) such that if R is any (Ad, 1)
rectangle then the cardinality of any set of pairwise nonclose (d,t) rectangles contained
in R is at most C.

Proof This is left to the reader. OJ

With the given choice of Cy we therefore have the following fact.

Lemma 1.3 Any set of pairwise non-close (9, t)-rectangles has a pairwise incomparable
subset with comparable cardinality.

Proof This follows from Lemma 1.2 and standard counting arguments. O

We now fix two finite sets of circles, W and B, which we call white and black respec-
tively, and let m = |WW| and n = |B|. We make the following assumptions:
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W and B are each d-separated. (5)

If ¢; and ¢y are the same color then d(cy, o) < t. (6)
If ¢; and ¢ are opposite colors then d(cq, c2) > t. (7)
If ¢; and co are opposite colors then d(eq, ca) < 100t. (8)

Define w € W and b € B to be incident if A(b,w) < ¢, and define Z(W, B) to be
the set of pairs (w,b), w € W, b € B, such that w and b are incident. In principle,
one wants to make a nontrivial estimate of the cardinality |Z(W, B)|, but the “clamshell”
configuration where all the white and black circles are tangent at a point shows that this
is not possible, so it is necessary to set things up a bit differently. We make the following
further definitions.

A rectangle of type (> p, > v) is a (0, t)-rectangle which is tangent to at least p white
circles and to at least v black circles. Additionally, a rectangle of type (u,v) is a (d,1)-
rectangle which is tangent to between p and 2 white circles and to between v and 2v
black circles, a rectangle of type (u, > v) is a (9, t)-rectangle which is tangent to between

w and 24 white circles and to at least v black circles, and a rectangle of type (> p,v) is
defined analogously. The main result of this section is

Lemma 1.4 If € > 0 then there is a constant C¢ such that the cardinality of any set of
pairwise incomparable (4, t)-rectangles of type (> u, > v) is bounded by

e (G 5 3)

The remainder of the section is the proof of Lemma 1.4 and its corollary, Lemma
1.17 below. We first recall some geometric and combinatorial facts; these are largely
elementary, and most of them have been used before in similar contexts (e.g. [8], [12],
[18]). However, our present notation is rather different, so we discuss the proofs.



Lemma 1.5 If w and b are incident, then there is a (¢, t)-rectangle R such that both
w and b are tangent to any (J,t)-rectangle close to R. Conversely, if w and b are tangent
to a common (6,t)-rectangle, then A(b,w) < C20. If they are tangent to comparable
(0,t)-rectangles then A(b, w) < ¢ where the implicit constant should be chosen after Cy.

Proof Let w = ¢(x1,71), b = ¢(x2,72); we can suppose that r > ro. Then ||z; — xo| —
|ry — 7o|| < 9. Take the ray emanating from z; and passing through z,. It intersects w

at a point p. Let R be the d-neighborhood of the arc of w centered at p with length %,
and let S be the 1006-neighborhood of the arc of w centered at p with length 10\/§ . Itis

not difficult to verify the following two facts provided C; has been chosen large enough:

1. S is contained in the Cid-neighborhoods of both w and b.
2. Any rectangle which is close to R in the sense defined above is contained in S.

The first statement of the lemma follows. For the converse statement, we use that the
2
area of the intersection of the Cjd-neighborhoods of w and of b is < S (see [19],

™~ \tA(w,b)

Lemma 3.1(a)). If w and b are tangent to a common 0, t-rectangle, then the intersection
of their C1d-neighborhoods contains this rectangle, so we get

5 \/5 . ¥
™\ /tA(w,b)
which gives A(b, w) < Cqd. The final statement of the lemma follows in a similar way. [

Lemma 1.6 For any w and b the cardinality of a set of pairwise incomparable (d,1)-
rectangles tangent to both w and b cannot exceed a fixed constant C.

Proof If any such rectangle exists then A(w, b) < C3 by Lemma 1.5. The intersection
of the Cj6-neighborhoods of w and b is then contained in the C'6-neighborhood of an arc

of length C\/§ ([19], Lemma 3.1b), and by Lemma 1.2 the latter set contains only a
bounded number of pairwise incomparable (4, t)-rectangles. O

We define Z(B, W) similarly to Z(B, W) replacing 6 with C,d.



Lemma 1.7 (a) If R is any set of pairwise nonclose (9, t)-rectangles then
IZ(B,W)| 2 [{(R.b,w) : R € R, and b and w are both tangent to R}|
(b) There is a set R of pairwise incomparable (4, t)-rectangles such that

1Z(B,W)| S {(R,b,w) : R € R, and b and w are both tangent to R}|

Proof Consider a pair (b,w) € B x W. If (b,w) &€ Z(B,W) then no rectangle R as in
the lemma can exist, by Lemma 1.5, and if (b, w) € Z(B,) then just a bounded number
of pairwise nonclose such R’s can exist, by Lemma 1.6. This proves (a). For (b), use
Lemma 1.5 to choose for each (b,w) € Z(B, W) a rectangle R such that any rectangle
close to R is tangent to w and b. Take a maximal pairwise nonclose subset of these R’s,
and then use Lemma 1.3. O

Lemma 1.8 Let c1,co, c3 be three circles. Let R be a set of pairwise incomparable
(0,t)-rectangles with the following property:

(x) For each R € R there is a circle ¢ such that d(c, ¢;) > t for each i, such that ¢ and
c; are tangent to R, and furthermore such that there are two (9,t)-rectangles Ry and Rj
such that c and ¢; are tangent to R; for © = 2, 3, and such that R, R, and R3 are pairwise
incomparable.

Then the cardinality of R cannot exceed a fixed constant.

Proof We use the following fact, which is included in the so-called Marstrand three
circle lemma.

(M): Let C be all circles ¢ such that d(c,¢;) > t and A(e,¢;) < Oz, and such
that the Cjd-neighborhood of ¢ intersects the Cid-neighborhood of ¢; (i = 1,2,3) at

points p; satisfying |p; — p;| > 03\/§. Then the set U o (Cid-neighborhood of ¢) N
(Cy6-neighborhood of ¢;) is contained in the union of the Cid-neighborhoods of two arcs

of ¢; each of length less than < \/§

This fact is implicit in [8] and is stated in [18], Lemma 1.8. A detailed proof is
contained in the proof of Lemma 3.2 in [19].
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To pass from this to Lemma 1.8, let ¢ be a circle as in (x). Then A(c,¢;) < O
for each ¢ by Lemma 1.5. Let p; be a point of R;, © = 2,3, and let p; be a point of
R. All three rectangles R, R, and Rj3 are tangent to ¢, so by Lemma 1.1 we must have

lpi—pj| > Cs \/§ . The definition of tangent implies that R is contained in the intersection
of the Cyé-neighborhoods of ¢ and of ¢;. Accordingly, by (M), R is contained in the union

of the C19-neighborhoods of two arcs of ¢; each of length < g Now Lemma 1.2 implies

that there are at most a bounded number of pairwise incomparable R’s. U

Lemma 1.9 Let ¢; = ¢(x1,71) and co = c¢(x2,72) be circles with d(eq,¢2) > ¢, and
assume that r; > ro. Let Ry and Ry be comparable (6, t)-rectangles and assume that ¢;
is tangent to R; for ¢ = 1,2. Then

(i) co is contained in the C'o-neighborhood of the interior of ¢;.

(ii) For any constant A there is a constant C' = C'(A) such that the cardinality of a
set of pairwise incomparable (9, t) rectangles each of which is tangent to ¢; and intersects
the Ad-neighborhood of the interior of ¢ does not exceed C.

Proof (i) Let ¢; = C(z4,7;). Lemma 1.5 implies A(eq, c2) < Cd. Then z € ¢y implies
|z—x1| S |Z—$2|+|SL‘2—SL‘1| S |Z—SL‘2|+7"1—7"2+O5 S 7’2+5+T1—T‘2+C5 = 7’1+(O+1)5,
as claimed.

(ii) A(e1,c2) S 0 by Lemma 1.5. Using that r; > 7y it follows similarly to the proof
of (i) that the intersection of the §-neighborhood of ¢; with the Ad-neighborhood of the
interior of ¢y is contained in the Cd-neighborhood of ¢y for suitable C'. The lemma now
follows using that the intersections of the C'd-neighborhoods of ¢; and c; has diameter

< \/§ by [19], Lemma 3.1, and using also Lemma 1.2. O

In the proof of Lemma 1.4 we employ the “Canham bound plus divide and conquer”
strategy of (for example) [3]. The next few lemmas provide the necessary combinatorial
ingredients.

Lemma 1.10 (Canham Lemma) The cardinality of any set of pairwise incomparable

2
mn? | % The cardinality of any set of pairwise
uv3

(0,t) rectangles of type (u,v) is <

2
incomparable (8, %) rectangles of type > p, > v is < ™27

2
pv 3

+%log%.
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Proof The second statement follows readily from the first by summing over the different
dyadic levels for g and v.

To prove the first statement, let R be a set of pairwise incomparable rectangles of
type (u, ). Observe that for each w € W and b € B there is at most a bounded number
of rectangles R € R which are tangent to both w and b, by Lemma 1.5; this fact will be
used several times below.

The letter b always denotes an element of B, and w an element of VW. We define the
following sets:

P: all pairs (w, b) such that there is R € R with both w and b tangent to R.

P(b): all pairs (w,b) € P with given second member b.

Q: all quadruples (w;,ws,ws,b) such that the following holds: there are distinct
rectangles R; € R such that, for each 7, w; and b are both tangent to R;.

Q(b): all quadruples (w1, w2, ws,b) € Q with given last member b.

Lemma 1.8 implies that, for given wy, ws, w3, there are at most C' rectangles Ry € R
for which some b € B may be found such that (w;, ws, w3, b) € Q and such that the choice
of R; in the definition is the given one. For each choice of Ry, there are at most 2v ways
to choose b, since R; must have type (u,v). Accordingly

Q| <m®.-C-2v (9)

On the other hand, for each b € B there are exactly |P(b)]? triples (wy, ws, w3) such that,
for some Ry, Ry, R3 € R and each i € {1, 2,3}, w; and b are both tangent to R;. Similarly,
there are exactly |P(b)|? pairs (w1, ws) such that, for some Ry, Ry € R and each i € {1,2},
w; and b are both tangent to R;. For each of these, there are at most 4u choices of w3
which are tangent to either R; or Ry. It follows that

1Q(b)] > [P(®)° — 124 P(b)? (10)
Therefore

Pl = > IPO)

b

< S PwI+ D> [PO)
b:| P ()| <244 b:| P ()| >244
< 2pm+ > (21Q0))F

b: P (b)| >24p
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< 2pn+ns2 > Q)3
b P (b)|>24p
12

< pun+vinsm
where the second inequality follows from (10) and the last inequality follows from (9). If
R € R then there are at least pv pairs (w,b) € YW x B such that w and b are both tangent

2
to R. It follows that [P| < 2 + 25™ as claimed. O
v3pn

Lemma 1.11 Assume W and B have no (9, t) rectangles of type (> 1, > 1) nor of type
(> po, > 1). Then

1
ZOV. B)| < pnms log v + vym log pig

Proof Using Lemma 1.7 there is a pairwise incomparable set of (9, ¢)-rectangles R with
(sums over p and v run through dyadic values)

ZOW,B)| < Z [{(b,w) : b and w are both tangent to R}|

ReR
< Z uv - #(members of R which are of type p, v)
1V
nm3  m
< Z pw(— +—)
n<po Vs K
v<ivg

1
< pdnm3 log vy + vymlog g

At the next to last line, we used Lemma 1.10 with the roles of white and black reversed.

O

Lemma 1.12 (Cell decomposition lemma) Suppose we randomly choose 7 black circles.
Then with high probability there is a decomposition of the white circles

W =WU (UE,W;) (disjoint decomposition)
with

(i) R < r3a(r), where a(r) grows extremely slowly - in particular slower than any
power of logr.
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(i) For each 4, there are < ™% black circles b such that A(b,w) < Csd for some
w e W,

(iii) Each circle in W* satisfies A(b, w) < C39 for some circle b in the random sample.

Proof This lemma is due essentially to workers in computational geometry (see for
example [3], [14]), and was adapted for analysis purposes in [18]. The version stated here
differs from Proposition 2.1 in [18] in that there we had W = B, but the present bipartite
version follows in exactly the same way. O

Notice that the same parameter (namely Csd) appears on the right hand side in (ii)
and (iii). It would be more convenient to be able to use Csd in (ii) and ¢ in (iii), but this
is not possible without additional work; see the proof of the claim in [18], p. 997. We
must therefore phrase the next lemma in terms of Z(B, W).

Lemma 1.13 With high probability the cardinality of W* is < M

Proof Part (iii) of Lemma 1.12 implies that the probability of a given circle w € W to
belong to W* is bounded by

%|{b€B:A(b,w) < 046}

Accordingly the expectation of the cardinality of W* is bounded by M, which
suffices. OJ

We define a cluster of white circles to be a subset C C W, with the property that there
is a (6,t) rectangle R such that every circle in C is tangent to a (4, t) rectangle comparable
to R. In a similar manner we define a cluster of black circles. The next two lemmas are
related to considerations in section 1 of [20].

Lemma 1.14 Let C be a cluster of white circles and let b be a black circle. Then the
cardinality of any set of pairwise incomparable )d, t)-rectangles each of which is tangent
to some circle in C and to b is bounded by a constant.

Proof Consider the circles in the cluster with smaller radius than b. Choose a circle

in the cluster, wy, whose radius is as large as possible subject to this constraint. By the
clustering property and Lemma 1.9(i) above, any other w € C with these properties is
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contained within the C'd-neighborhood of the interior of wy. By Lemma 1.9(ii), b cannot be
tangent to more than a bounded number of incomparable (6, t)-rectangles which intersect
the latter set. A symmetric argument for the circles with larger radius than b completes
the proof. O

Lemma 1.15 (Clustering Lemma) Given a value of py we can subdivide the white
circles as

W =W, UW,

where

1. W, and B have no (6, t)-rectangles of type (> p9, > 1), and

2. W, is the union of at most |#—V}J}|(log m)(logn) clusters.

Proof We fix a large constant A.

We will use a recursive argument. Accordingly, if W' C W, then we let x(W') be
the maximum possible cardinality for a set of pairwise incomparable rectangles of type
> 1g, > 1 for W' and B. Note first of all that k(W) < ‘vt by Lemma 1.6.

Assume now that kx(W') = k. We will prove: W' = W U W, where k(W'*!) < &
and there is a set R; of at most A;”—O log m rectangles such that each circle in W, is tangent
to a rectangle which is comparable to a rectangle in R;.

Namely, let R be a set of pairwise incomparable rectangles of type (> uo, > 1) for W;
and B with maximum possible cardinality k. There are two cases.

(i) Ifk < A;”—O logm then we let Wj be all circles in W' which are tangent to a rectangle
comparable to a rectangle in R; and W = WA\W;. Evidently k(W) = 0.
(i) If & < Aﬂﬂo log m then we choose AZ’—O log m rectangles from R at random. We let

W; be the circles tangent to a rectangle which is comparable to a rectangle in the random
sample, and W' = WA\ W;. We will show that with high probability k(W) < £.

For this define, for each ¢ € W',
P(w) = k™'|{R € R; : w is tangent to a rectangle comparable to R}|
Then w is in W with probability at most (1 — P(w))™*% ™. If P(w) >

1

2
is at most m~¢4. Accordingly with high probability no circles with P(w) >
to W't

then this

Ho
,n% M

1 po

5> belong
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Now let R;11 be a maximal set of pairwise incomparable rectangles of type (> g, > 1)
for W and B. Every rectangle in R4 is comparable to a rectangle in R, since
otherwise we could have enlarged R; by adjoining an incomparable member of R;;; to it.
Consider now the quantity

Z [{R € R; : R is comparable to a rectangle tangent to w}| (11)
’wEWH_l

This is equal to ZwEWH_l kP(w), so with high probability it is less than g%‘) On the

other hand, the quantity (11) can also be described as

Z [{w € W' : w is tangent to a rectangle comparable to R}|
RER;

and therefore dominates 19| R;11]. We conclude that |R;41| < %, as was to be shown.
We now proceed recursively. Let W = W and apply the preceding to express W' =
W) UW?!. Then apply the preceding to express W' = Wi UW?* and continue in this
manner, stopping when we reach a situation where we are in case (i) above. Suppose we
stop after T stages. Since k(W') is initally < oot and decreases each time by a factor of

2, we then have T < logn. We now define W, to be the set W' defined at the last
iteration. It satisfies k(W,) = 0 as required. On the other hand we define W* = U;W;.
This set is the union of the O(logn) sets Wi, for each of which there is a collection of
AT—O log m rectangles such that each circle in W is tangent to a rectangle comparable to
one of these. The lemma follows. O

We prove Lemma 1.4 in two steps: first we consider the case p = v = 1 and then the
general case.

Lemma 1.16 For any € > 0 the cardinality of a set of pairwise incomparable rectangles
of type (> 1,> 1) is

< Ce¢ (((mn)%+€ +mlogn+nlogm) (12)
for a suitable constant Cl.
Proof We fix € and will argue by induction on mn. We note first of all that the case of

small mn is a tautology, and may therefore assume that (12) has been proved for families
of circles W', B" with [W'||B'| < &2, If m < n3+€ (or vice versa) then the bound (12)
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follows directly from Lemma 1.10, since in this case mn3 < (mnﬁ*‘E

assume that

. We may therefore

mstt <n<m (13)

Let R be a maximal set of pairwise incomparable (0,t) rectangles of type (> 1,> 1).

Let pg = vy = (mn)i, replace 0 with C%0, and apply Lemma 1.15 twice with these
parameters, once as stated and once with the roles of W and B reversed. This gives
decompositions W =W, U Wy, B = B, U B,

Any R € R is a rectangle of type (> 1, > 1) for one of the three pairs (Wy, B), (W, By)
or (Wy,B,). We show first that there are < (logm)(log n)(mn)T members of R which
are rectangles of type (> 1,> 1) for (W, B). Let R be such a rectangle. Then there is C,
one of the clusters in 2. of Lemma 1.15, such that R is a > 1, > 1-rectangle for C and B.
For given b € B, by Lemma 1.14, there are at most a bounded number of incomparable
(C99, t)-rectangles which are Cyd-tangent to some circle in C and to b. It follows using
Lemma 1.2 that there are at most a bounded number of R € R which are d-tangent to
some circle in C and to b. Hence the number of (§,t) rectangles R € R of type (> 1,> 1)
for C and B is < n. Summing over the clusters, there are < 2 (log m)(logn) rectangles
of type (> 1,> 1) for W, and B, and this is < (logm)(logn)(mn)1 by choice of .

Likewise there are < (logm)(logn) (mn)% members of R which are rectangles of type

(> 1,> 1) for (W,By). These contributions are small compared with Ce(mn)i*¢, so it
remains to consider (Wy, By).

Fix an appropriate 7, which should be large compared with (log n)% but small com-
3 1

pared with both —= and —™"——; this is possible by the assumption (13). Now

m1 log(mn) n1Z log(mn)
apply Lemma 1.12 to W, and B, with this 7. We first show that [W;| < {75.
We know by Lemma 1.13 that [W;| < %989)' Since Wy and B, have no (€0, t)-

rectangles of type (> po, > 1) nor of type (> 1, > 14), we may apply Lemma 1.11 replacing
0 with C%. We conclude that

. 1
TV, By)| S mwplog o + nmd og vy
< mini logm + mints logn
and therefore . L
Wyl < r(min~1logm + miniz logn) (14)
The right side of (14) is small compared with m by choice of r, so [W;| < {5 as claimed.

We may therefore apply the inductive hypothesis obtaining that W, and B, have fewer
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than C¢ <( 556

follows that this is < {-Ce(mn)1 ate,
Now consider the 1nd1v1dual cells W For each of them, we let lS’Z be the circles b € B,
for which there exists a rectangle R € R tangent to b and to some w € W; By Lemma

)4+€+mlogn+nlogm) rectangles of type (> 1,> 1). Using (13) it

1.5 and part (ii) of Lemma 1.12 we have |B;| < ”l‘;ﬁ. Since r is large compared with
logn, we conclude by the inductive hypothesis that W; and B; have at most

nlogn nlogn nlogn

WL IHE 4+ W[ log(C

)+C

Ce ((O 1og(|wg))

rectangles of type (> 1,> 1). Summing up, we bound the number of rectangles of type
(>1,>1) for UiW, and B, by

r

nlogn s i3 nlogn ; nlogn ;
Ce <(C’7g)i+62|wg|i+€—l—log(0 Tg DN ARe Tg Zlog|Wg|> (15)

i i

We use (i) of Lemma 1.12 and Holder’s inequality to bound the first term, and we also
use (i) of Lemma 1.12 to bound the third term. For the middle term, we use that r is
large compared with logn. This leads to

1
nlogn ,

15) < Ce ((C*W)%%m%*f(r%(r»“ +mlogn+C a(r) log m)
r

3+e ie
< Ce¢ <(Clog n)ia(r) (mn)%+€ +mlogn + OTQQ(T)TLIOgTLIOg m)

r4€

1

The last term is small compared with (mn)%+€ since r < ™ and n < m. The first
nli2

term is small compared with (mn)1+€ since r is large compared with (log n)%, so that the

3.€ 1l ¢
. 1 it 1 . . . . 3
coefficient 1257 T4€a(T) is small. The middle term is also small compared with (mn)1*¢

3
3+e

since m < n3. We conclude that (15) is small compared with (mn)i*€, which concludes
the proof. O

Proof of Lemma 1.4 This is now a simple random sampling argument. Let A be a
large constant. Randomly choose A% black and Am white circles, with the convention
that if v < 2A we choose all the black circles, and if 1 < 2A we choose all the white ones.
Each fixed rectangle of type (> p, > v) for W and B is then a (> 1, > 1) rectangle for the
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samples with probability bounded below. Hence, if R is a set of pairwise incomparable
(0,t)-rectangles of type (> p, > v) for YW and B then with high probability R has a subset
with proportional cardinality consisting of rectangles which are of type (> 1, > 1) for the
samples. Hence |R| < Ce <(%)%+e + Tlog 7 + 7 log %) by Lemma 1.16. O

We will apply Lemma 1.3 by means of a certain slightly weaker statement, Lemma
1.17 below, which is formulated in terms of Euclidean rectangles instead of the curvilinear
“rectangles” which were convenient in the preceding proof; we remark that no further use
of the curvilinear rectangles will be made in this paper. For a suitable constant C', a
(Euclidean) rectangle R with dimensions ¢ x § 7 s d-tangent to a circle c if it is contained
in the Cd-neighborhood of c¢. If we are given collections YW and B of white and black
circles then R is of type (> p, > v) if it is tangent to > p white circles and to > v black
ones. T'wo rectangles are incomparable if neither is contained in a suitable fixed multiple
of the other.

Lemma 1.17 Let W and B satisfy (5), (6), and (7). The cardinality of a set R of
pairwise incomparable (Euclidean) § x ¢ %—rectangles of type (> u, > v) obeys the bound

)i+ — 4 —

R (16)

|R|go€t—%.5€((@§ m ”)

Proof Assume at first that ¥V and B also satisfy (8). It is not difficult to see that if C4
was chosen large enough then for any R € R there must be a (C9, t)-rectangle in the sense
of Lemma 1.4 which contains R and which is tangent in the sense of Lemma 1.4 to any
white or black circle to which R is tangent. Each such (C§,t)-rectangle contains < 2
incomparable R’s, and the bound (16) therefore follows from Lemma 1.4. To eliminate
the assumption d(w, b) < 100¢, note that by (6) there must be a number 7 > ¢ such that
7 < d(w,b) < 1007 for all w and b, and apply the above reasoning replacing ¢t by 7. O

Remark We take t = 1 and m = n, p = v in this remark to avoid certain technical
issues. The question arises as to whether or not the exponent % in the bound

m. s

VedCe: |R| < Cké‘e(lz)i (17)

of Lemma 1.17 is sharp or not. This appears to be a difficult question. One can show
4

that % cannot be replaced by a number less than 3, and it is also fairly clear that % is the
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best exponent that can be obtained by an argument based on the techniques of [3]. See
[19], p. 143.

2. A dual formulation

A o-plateisa d x 0 3 x 1-rectangle whose longest axis is a light ray and whose second
longest axis is tangent to the corresponding light cone, and a d-tube is a d x § x 1-rectangle
whose longest axis is a light ray. The direction of a tube or plate is the direction of its
longest axis. This direction will always be of the form (e, 1) with e € S*. We remark that
it is sometimes necessary to replace the length parameter 1 by a fixed constant (e.g. this
is the case in Lemma 2.2 below) and that we will often ignore technicalities of this kind.
Two o-plates or d-tubes are comparable if one is contained in the dilate of the other by a
fixed constant C, and they are parallel if their axis directions fail to be C'd-separated for a
suitable C'. A family of d-plates or d-tubes is separated if no more than C' are comparable
to any given one. We also fix a small number ¢; > 0 and then a much smaller number e.

Lemma 2.1 Let YW C R? and B C R® be §-separated sets of points; assume that
d(w,b) >t and that d(wy,ws) < t, d(b1,be) < t. Let R be a separated set of d-plates,
each containing at least p points of W and v points of B. Then for any € > 0

IR| <t725 € ((@)% L my ﬁ)
v 7

v

max(m,n)\ 3
min(p,v) ) 2

In particular, this is < 57675’%(

Proof Since the plates have bounded diameter we can assume that all the plates and
points are contained in the region 1 < z3 < C for suitable C'. To any plate m we can
associate a rectangle R, in R? as follows: extend the plate to an infinite ¢ x %—rectangular
cylinder with the same axes, and then intersect this with the plane z3 = 0. It is not
difficult to see that if a point (7, z3) € WU B belongs to =, then the circle with center T
and radius x3 must be d-tangent to this 6 x ¢ %—rectangle in the manner discussed at the
end of section 1. The result therefore follows from Lemma 1.17. 0

Lemma 2.2 (i) Let P be a family of d-plates. Then there is a separated family of
(C6)2-tubes T so that
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e Each 7 € P is contained in some 7(7) € 7, and for fixed 7 the plates with 7(7) = 7
are all parallel.

(ii) Let 7 be a family of §2-tubes. Then there is a separated family of (05)%—plates
A so that

e Bach 7 € 7 is contained in some II(7) € A. If Il € A then the directions of the
tubes with TI(7) = IT will all be of the form (e, 1) where e belongs to an arc of S* of length

57

Proof This is almost a tautology. For (i), we choose for each 7 a roughly 6 2-tube T
containing 7, and observe that if 7 is replaced by any comparable tube, then after dilation
by by a fixed constant the comparable tube will still contain 7. Now pass to a maximal
separated subset and let 7 be the dilations of the tubes in the subset. The fact that
plates m with a given 7(7) are all “parallel” in our sense is a simple property of light rays.
Part (ii) can be seen in a similar way. O

In, say, part (i) of the above lemma it is of course possible for 7 to be contained in
more than one tube 7 € 7 if so we fix a definite choice of 7(7). In the sequel, given a
family of d-plates P, we will always fix a family of tubes 7 as in (i), and will denote 7
by 7 (P). For each 7 € T (II) we define

Xfp(T) ={reP:7(n)=1}

Thus P is the disjoint union of the Xp(7)’s where 7 runs over 7(P). Similarly, given a
1
3

family of & %—tubes, we will fix a family of (C'd)2-plates A as in (ii), and will denote A by
A(T), and for II € A we will denote

Yr(Il)={r e T :1I(r) = 11}

Let W be a set of points (of R?), P a set either of é-plates or of d-tubes. We let
IOW,P)={(w,m1) e WX P :wem}

If ¢ is fixed and if = is a point of R® then we let Q(x) be the t-cube containing z. In
the sequel we will be working (analogously to [20]) with a relation ~ between ¢-cubes for
suitable ¢ and elements of P.
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If ~ is such a relation, and if w € W, m € P, then we use the notation w ~ 7 to mean
that Q ~ 7, where @) is the t-cube containing w, and in addition w € 7.

A good incidence is a pair (w,7), w ~ 7 and a bad incidence is a pair (w,7) €
IW,P), w o . We use I, for the set of bad incidences; sometimes we also use Zy(~)
if we want to emphasize the dependence on the relation ~. In what follows, we always

assume that on a logarithmic scale ¢ is large compared with (5%; in practice t will be set
equal to 5.

The following property will be crucial. We note here that the value of Cj will be
adjusted numerous times during the course of the proof.

Property (R): For each m € P there are at most (log %)CO t-cubes Q’s such that @ ~ TII.

The next few lemmas construct relations with this property. The main results which
we need in subsequent sections are Lemmas 2.7 and 2.8 below.

Lemma 2.3 (i) If P is a d-separated family of d-plates and W is a J-separated set of
points then there is a relation satisfying (R) and with |Z,| < 6 CSt=5|W||P|s.

(ii) If 7 is a d-separated family of d-tubes and W is a d-separated set of points then
there is a relation satisfying (R) and with |Z,| < 6~ C€=5)W||P|z.

Remark The exponents 6 and 5 in (i) and (ii) respectively can easily be improved
substantially, but this would not lead to any improvement in the results of the paper. On
the other hand, in part (a) it would be interesting to decide whether the exponent % in
(i) can be improved to % for arbitrary p < 4 or even to % for some fixed p > 3; this is the
same issue we have discussed in the remark at the end of section 1.

Proofs From the form of the statements we can assume that all the plates and points
are contained in a disc of fixed size.

(i) Define a relation ~ as follows: for each 7 let Q(m) be the t-cube @ for which
IWNmN Q| is maximum (if there are several such, then pick one arbitrarily), and declare
7 to be related to Q(m) and to its neighbors. Property (R) is clear, so it remains to
estimate |Z,(~)].

By pigeonholing, we can find P’ C P and a positive integer v so that the following
hold:
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L P 2 (log 1)1,
2. If € P then [{weW: (w,n) € Ip(~)} € [v,2v].

If 7 € P', then 7 intersects < ¢! t-cubes. Hence there is a t-cube Q'(7) with Q'(7) # 7
such that (W N Q'(r) N 7| 2 tv. Q(n) is at distance at least ¢ from Q'(7); and by the
maximality property in its definition, Q(7) must also satisfy |[W N Q(7) N 7| 2 tv.

In view of the assumption that everything is contained in a fixed disc there are < ¢°
possible pairs of t-cubes (Q, Q'), so some pair must be (Q(7), Q'(r)) for = t5|P’| choices
of . Applying Lemma 2.1 to W N Q(7) and W N Q'(7), we obtain

e, 1 W] s
t6 / < 5 Et—l |
P < F ()
L L
tZ4| /| P log?
so that
T, < logko 3¢5 W||P'|5
< SEW|IPs
as claimed.

(ii) This is done the same way, but we need a substitute for Lemma 2.1. For this we
use the following easy bound: suppose we have two d-separated sets of points W and B
with d(w,b) > t for each w € W, b € B, and a set of tubes 7 such that each 7 € 7 is
incident to p points or W and to v points of B. Then

7] < o DVIBL (18)
1%

To prove (18) we argue as follows (see [19], p. 137-8). Consider all triples (7, w, b) where
Te€T,weW,be Band 7 is incident to both w and b. There are at least |7 |uv such
triples but at most ¢t !|W||B|, since two t-separated points can have at most ¢~! tubes!
in common. This proves (18).

The proof of (ii) is now entirely analogous to the proof of (i). We define ~ via: for
each 7 € T let Q(7) be the t-cube @ for which W N @ N 7| is maximum. Declare 7

IThe bound is t~! instead of t=2 because of the light ray structure.
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to be related to Q(7) and to its neighbors. Let Z;, be the set of all bad incidences. We
can find 7 C 7 and v so |T'|v 2 (log %)_1|Ib| and each plate 7 € 7' has about v bad

incidences. Hence there is a cube @'(7) containing 2 tv points w € W such that (w, )
is a bad incidence. Some pair of -cubes must be (Q(7), Q'(7)) for at least t°|7"| choices
of 7. Applying (18), we obtain

)17 < ¢! (M)Q

tv

< t_l ( |W| )2
~ t|Z,|/|T" [logs

log Lt~ 2| W||T"|2
W T2

so that

|Zs|

O

Lemma 2.3 leads immediately to a certain refinement of itself. If ~ is a relation as
above, and h is a number then we define W" = {w € W : w belongs to between g and
h plates from P}, and I = {(w,7) € T, : w € W"}. We also make the analogous

definitions for tubes.

Lemma 2.4 (i) If P is a d-separated family of d-plates and W is a J-separated set of
points then there is a relation satisfying (R) and with [Z7] < 6~ Ct=|W"||P|s for all h.

(ii) If 7 is a d-separated family of d-tubes and W is a d-separated set of points then
there is a relation satisfying (R) and with |Zy| < 6~ C€¢=5|W"|| Tz for all h.

Proof We do (i); (ii) is exactly the same. We may clearly assume h is a power of 2,
and also that h < C'577 since otherwise W" = (. For each dyadic integer h = 27 < 52
we apply Lemma 2.5 to P and W", obtaining a sequence of relations ~;. We then define
Q ~ 7 if g ~; m for some j. Property (R) will still hold, since there are < log% values of
h, and the rest follows from the definitions and the bound in Lemma 2.3. O

We now prove a result for tubes which is stronger than the one in Lemmas 2.3(ii) and
2.4(ii); this will follow roughly by combining Lemma 2.4(i) for the family of plates A(7)
and Lemma 2.4(ii) for the families of tubes Y7 (II).
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Lemma 2.5 Let YW C R® be a 5%—separated set of points; 7 a family of §2-tubes with
cardinality k; assume that for each plate IT € A(7) we have |Y(II)| < m. Then there is
a relation ~ satisfying (R) and with

L

[Z4| S 67t mi ki s | (19)
for each p.
Proof We assume at first that
m
Y e (2, m
for each I € A(7T). Notice that this implies

A(T) 5 (20)

k
m
We also first fix 4 and construct a relation ~ satisfying (19) for the given value of p. This
relation ~ is defined as follows.

1. Apply Lemma 2.4(i) to the family A(7) obtaining a relation ~; between plates
from A(IT) and t-cubes.

2. Apply Lemma 2.4(ii) to the family Y7 (II) for each II € A(T') obtaining, for each
IT, a relation ~p between tubes from Yo (II) and t-cubes.

3. Define @ ~ 7 if either @ ~q II(7) or Q ~m(r) 7.

Property (R) is clear from the definition 3. and the corresponding property for ~;
and ~p. We now prove (19).
Fix a positive integer a and define

W — e W' Y o w) > a)
TEYT(H)

Ty(a, 1) = {(w,7) : 7 € Yg(Il),w € W™ w € 7 and w £y 7}
By Lemma 2.4(ii) we have

|Zp(a, IT)| < 5’Cet*5m%|Wu7a,H|
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Hence also
Z |Ib(a, H)| 5 5—C€t—5m% Z |Wp,a,H|
ne A7) -
SRS 1)

~Y

The last line followed since a point of W* is in W for < £ choices of II.
Now fix a and b and define W*(a, b) to be the set of pomts w € W* such that, for at
least b plates II € A(7), we have both

(i). (w,II) € Zp(~1) and
ii). There are at least a tubes 7 € Y4 (II) such that (w, 1) is a ~p-bad incidence.
T

Notice that if w and IT are as in (i), (i), then w € W**™ and furthermore if 7 is as
n (ii), then (w, 7) € Zy(a, IT). We may therefore estimate W#(a, b) using (21). We obtain

W) < (@) |Ty(a, D)

< 5P me (a?h) W (22)

~Y

On the other hand, using property (i), and then Lemma 2.4(i) and estimate (20) we
obtain

(WH(a,b)] < by (~1))]
k
S SO ()] (23)
Now define
W) ={weW": [{T: (w.7) € Ty(~)} = v}
If w € WH(v) then by pigeonholing there are dyadic values of a and b with ab ~ (log %)’ly
such that, for at least b plates II € A(7), there are at least a tubes 7 € Y (II) such that

(w,T) € Zp(~). Thus w belongs to W*(a,b) with these values of a and b. Using (23),
(22) and summing over dyadic a we get that

5 S min (57t WL 67 b () )
—C€,-6 k1 méﬂ
S 5 (ao(—)3+ >|W(M)|
m ag

26



for any given ag. Optimizing in regard to ag we get
vIWH )] < 6L tmizkt

Summing over dyadic v we obtain

Zh < D vIwrw)

v

< 5O Sk | W

which is (19).

We can clearly now construct a relation ~ satisfying (19) for all x4 by the argument in
the proof of Lemma 2.4, so it remains only to remove the assumption that |Yz(II)| > %.
For this, we partition 7 as Uj.9i<,,7 ; where

T;=U a7, Yr(l

ne ALy
Y (D)]e(25-1,27

Then we apply what we have already done to construct a relation ~; between tubes from
T ; and t-cubes satisfying (R) and satisfying (19) with m replaced by 27 on the right
hand side. Then we can define a relation ~ between 7 and t-cubes by taking the union
of the relations ~;. It clearly satisfies (R), and it satisfies (19) in view of the favorable
dependence on m there. O

Notice that the hypothesis about the cardinality of X(II) is always satisfied with
1 1 1 1
m &~ § 2, since a C'd2-plate contains O(d 2) separated d2-tubes. Thus the following
statement is immediate from (19):

Lemma 2.6 Let W be a Vd-separated set of points; 7 a family of 52-tubes with
cardinality k. Then there is a relation satisfying (R) and with

(2] < 6=CC 05k pE | (24)
for each p.

What we actually need in the sequel is versions of the above lemmas incorporating
“Schwartz tails”, which can now be obtained in a routine way.
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We make some further definitions. If P is a family of tubes or plates we define

Op = ¢ (25)
WEP

where ¢, was defined after the introduction. Given a relation ~ between t-cubes and
elements of P, we let
W)= 3 éula) (26)
m4Q(x)
be the corresponding sum involving only tubes unrelated to the ¢-cube Q(z) containing
x. We note that if P is a set of d-plates then for any d-cube A we have

max op <C min op (27)

where C' depends only on the choice of M. There is a corresponding fact for families of
1 1
02-tubes, where A may then be taken to be a d2-cube.
If W is a set of points, 7 a set of tubes or plates, ~ a relation as above, p > 0 then

we define
Tv=Y P(w)
we WV

Lemma 2.7 Let W be a v/d-separated set, 7 a set of C'v/d-tubes with cardinality k,
g a number, assume that ®7- < g on V. Then there is a relation between ¢-cubes and
elements of 7 satisfying (R) and with

T4 < 6O 085 ks W + 60| W)| (28)

Proof If T > 1 is dyadic then subdivide in T+/5 cubes and define W to be a subset
of W containing (exactly) one point in each such cube which contains a point of W; thus
WT is essentially a T'v/d-separated set. If w € W then we use below the notation wy for
the point of WT which belongs to the same T'v/§ cube as w.

If 7 € T then let 77 be the dilation of 7 by T"and 77 the family {77}. 77 is evidently
not separated, so we let Tg be a maximal separated subset. It is then clear that, for any
7€ T, 77 will be contained in a suitable fixed dilate 77, where 77" € 77, and that there
are only boundedly many possible choices for 7*.

We now apply a rescaled version of Lemma 2.6 to T{ and W7 for each dyadic T
with TvV6 < 69 for a suitable constant C, obtaining a family of relations which we
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call ~p; thus ~p is a relation between tubes from ’TOT and t-cubes. We then define a
corresponding relation ~ between tubes from 7 and t-cubes via 7 ~ Q if 71 ~¢ Q for
some 31 € ’TOT with 77 c 727, and we define 7 ~ Q if 7 ~¢ @ for some T. Since there
are only logarithmically many dyadic scales we see that the relation ~ has property (R).
It remains to check (28).

Suppose that w € W and that 7 ¢ Q(w). We express

or(w)< Y T Mxpp(w)

c€
71V 0<d " °

plus a small error. The error is bounded by a high negative power of the quantity 6+ +
dist(w, 7), and is therefore negligible for present purposes since the right side of (28) is
> '\ W|; we will in fact neglect this error term in the calculations below.

For each given 7 and T choose 71 as above. We know that 71 is not ~p-related to

*

the t-cube containing w. Accordingly, we can bound

@f’z—(w) < ZT‘M Z {7l (wp, 7T is a ~p-bad incidence}|
T T

Any given point can arise as wr for at most O(T?) choices of w, and any given tube in
TL can arise as 7 for at most O(T?) choices of 7. Accordingly,

T» < ZTG’MH(JE, o) e WE' x T : (2,0) is a ~r-bad incidence}| (29)
T

Further, if w € W then w is at most a CpuT™-fold point for 71, since Qr(z) < p. A

fortiori x is at most a CuT™M-fold point for 7¢. We conclude using Lemma 2.6 for the
relation ~; (and (29)) that

Ty <10 M€y 05 31ks (TM )3 W) (30)
T
We have overestimated in several of the factors here; for example, £ bounds the cardinality
of T§.

For large M we have a favorable dependence on T here, and may sum up to obtain
the lemma. O

Lemma 2.7 was of course based on Lemma 2.6. We can do the same in the context of
Lemma 2.3(i), obtaining the following lemma whose detailed proof we omit.
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Lemma 2.8 Let P be a set of d-plates; W a d-separated set in R®. Then there is a
relation satisfying (R) and with

Ty < 6O WI[P|3

O

In the sequel, we will apply Lemma 2.7 to 7 (P) where P is a set of d-plates. We will
be using the following terminology. If P is a set of d-plates then we will say that P is
type r if for each 7 € 7(P) the cardinality of Xp(7) is between r and 2r. For a general
P, the type r component of P is the subset P, C P defined by

Pr=UXp(r) 7 < [Xp(1)] < 2r)

Evidently P, is of type r.
We insert the following fact here for future reference.

Lemma 2.9 Assume that P is type r. Then for any o 2_cube @ we have
1
/‘Ppcbcz S 527"/‘PT(7D)¢Q
Proof First consider the version of this where we ignore the tail of ¢, i.e. the estimate

/(I)'Pséi”r‘/(bfr(p) (31)
Q Q

If a tube 7 contains r parallel plates m;, then we have 77, ¢ () < 7"5%¢T(x) if

x is not in the double of the infinite tube coaxial with 7. This gives (31) if @ doesn’t
1
intersect the double of the infinite tube coaxial with 7. On the other hand, if @) is a §2-
1
cube intersecting 7 then fQ ¢- 2 |Q| and [ o ®r; S 02[Q] for each j, and a corresponding
statement is valid if @ intersects the infinite tube coaxial with 7 since ¢, and ¢, die
at the same rate as one moves away from 7 in its axis direction. This gives (31) in the

remaining cases. The lemma follows since ¢ is essentially a sum of indicator functions
1
of 42-cubes. .
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In addition, we will need to deal with certain technical issues involving the distinction
between measure and entropy; the following definition and lemma give an easy way of
doing this.

Definition A set £ is d-evenly covered if there is a constant a such that |EF N A| €
[a6®, 2a6”] for each d-cube A which intersects £.

Notice that if E is d-evenly covered and if F' C E then we have
|F| S ad’E5(F) (32)

Conversely, if F'is the intersection of £ with the union of some collection of d-cubes then
we have

|F| 2 a5355(F) (33)

Lemma 2.10 Let E be a set with the property that for each 1-cube @, £ N Q is
either empty or of measure > 6% Then E has a d-evenly covered subset E' with
B 2 (log 1)1 E].

Proof This is just a pigeonhole argument. Let S,, be the union of the J-cubes A with
the property that |[ANE| € 2D §% 2776°]. Then S, = 0 if n < 0. Let N = C(log %)’1
for a suitable C. Then |(Up>nS,) N E| <27 < Z|E| by the hypothesis concerning the
measure of the intersection of E with 1-cubes. So there must be a choice of n < N such
that |S, N E| 2 (log%)’1|E|. We now set £’ = S,, N E. O

3. Localization property

In this section and subsequently, we make the convention that the parameters N and
§ always satisfy N = ¢~'. In this section we always let t = 5 where ¢, was defined after
the introduction.

Ifrisalxd? x o-plate, with respective axes ey, es, e3, then we let 7, be a rectangle and
centered at the point Nes with axes ey, es, e3 and respective axis lengths Cy, C1 N %, N,
where (' is a large constant. Thus 7* is approximately dual to © and is contained in
In(C) for suitable C.

An N-function is a function f which has a decomposition

f:wa

TI'EP
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where P = P(f) is a separated family of J-plates and

L 1fsl < 6.

2. fr is supported on 7*.

Such a decomposition is of course not unique; however, given an N-function we will
always fix a family of plates for f, and the associated functions f,. The properties of plate
families derived in section 2 should evidently translate into properties of N-functions and
we now carry this out. We note that we will use cancellation here, via the fact that
functions with disjoint Fourier supports are orthogonal.

Let f be an N-function with family of plates P, and let P be a subset of P. The
subfunction of f corresponding to P is f7~3 &t T S
Let Wy = {z : |f(x)| > A\}. We say that (f,W)) localizes if there are a collection of

functions fg (@ runs over t-cubes) such that

1. Each fg is the restriction to @) of the subfunction of f corresponding to a certain
collection of plates Pg, and

Y 1Po| < (log 5)°|P| (34)
Q

2. The (Lebesgue) measure of the set Ug{z € Q : |fo(x)] > (log %)_C)\} is at least
(log 1) W,

In the subsequent arguments we will use the terminology “A (log %)_C—fraction of W”.

This means a subset of W with measure > (log %)’C|W|
The following lemmas are what we have been leading up to.

Lemma 3.1 Let f be an N-function with plate family P and assume that
|P| < t390N3 (35)

Then (f, W) localizes.

Before giving the proof we record a simple uncertainty principle estimate which will
be used several times below. Namely, suppose that suppf is contained in |{] < N and
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that |f(a)| > A. Then, for a suitable fixed constant C

If |2 — a| < (CN|fllsc) ™" A then | f(z)| = (36)

DO >

by Bernstein’s inequality and the mean value theorem.

Proof of Lemma 3.1 Let & = |P(f)|, and notice that since k is an integer we necessarily

have A > 1. Since | fx| < ¢ and P is separated we also have A < ®p(z) S 5rifx € Wi.
We now make a “pigeonhole” type reduction.

Claim There are a value of pu € [%, 05_%} and a set YW C W so that the following
hold: 2

LW > (log%)’C|W/\|.

2. If z € W then ®p(x) € [1, 2u].

3. W is d-evenly covered.

For this, we show first that there is a set YWy C W such that [Wy| > (log %)’C|W)\|
2

and
(*) Wy intersects each 1-cube either in measure > §° or not at all.

Namely, we have || ]|

~Y

< 57%, so, by (36), if W intersects a 1-cube @ then [Wy N
El
Ql 2 52, We may therefore take Wy to be the set U@QNW ) : QNW) # D).
Bl

Next we choose a value of p > A so that Wy, a 2 (log %)*1 proportion of W, consists
of points with ®p(z) € [u, 2u]. We discard from Wy the set U(QNW, : [QNW| < 5100
where () runs over 1-cubes, and denote the remaining set by Ws. It is easily seen using
(x) that W still has measure 2 (log %)_1|W0|. We then apply Lemma 2.10 to obtain a
0-evenly covered subset and let VW be this subset. That proves the claim.

We apply Lemma 2.8 to the plate family P and a maximal d-separated subset of W,
obtaining a relation ~ which satisfies [ CID%D < 5 C€t 63 | X|. Here X is the union of the

d-cubes containing points of W, and we have used (27). By the even covering property
we can replace X by W here; see (32), (33). Thus

/W ol < 57t Ck3|W)
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It follows by the assumption (35) that
[ < cnm

Accordingly there is a subset W* C W with proportional measure and so that at each
point x € W* we have, say,
Dl (z) <A (37)

Now we define two functions f* and h as follows: On each given t-cube @

f*:wa

T~Q

h=) fr

AQ
Notice that even though f* is not a subfunction of f, nevertheless its restriction to any
t-cube @ is the restriction to @ of a subfunction of f. Evidently f*+ h = f, and |h| is
< <I>%D and therefore much less than A on W* so |f*| must be > £ on W*. Let fg be
f* restricted to @, and Pg the plates related to @. The bound (34) follows from the
property (R), so we are done. O

Lemma 3.1 does not suffice for what we want to do, because the assumption (35) is
too strong?. Accordingly we now give another lemma of the same type; notice that the
hypothesis (38) below is considerably weaker than (35) when A is close to its maximum

possible value ¢ 3,

Lemma 3.2 Let f be an N-function with plate family P and assume that
P| < 41000055 19 (38)
Then either (f,)V)) localizes, or else there are a subfunction f* of f, and a subset

W C W)y with [W| > (log%)’C|W>\|, so that |f*| > (log%)’c)\ on W, and so that
2

[oaf*|3 < 10005323 (39)

2We note though that any improvement on the exponent % in Lemma 2.3(i) would lead to a version
of Lemma 3.1 where the exponent 3 is replaced by some ¢ > 3, and that this would allow us to prove
Theorem 1 for some p without using Lemma 3.2.

34



for each 6 %—cube A.

Proof This is related to the proof of Lemma 3.1, but we use Lemma 2.7 instead of
Lemma 2.8. We note that necessarily A > 1, and as with Lemma 3.1 we begin the proof
with some pigeonhole reductions. Let k = |P|. Let P, be the type r component of P.
For some 7 we must have [{z € W) : |fp (z)| > (log %)_1)\}| 2 (log%)_1|W)\|. With
this value of 7, let 7 =T (P,) (= {7 € T(P) : v < |[Xp(7)| < 2r}). We clearly have

17| < § (40)

A minor variant on the proof of the claim in the proof of Lemma 3.1 now shows the
following:

There are a value of 7, a value of p < 572, and a subset W C Wy {z: [ fp (z)| >
2

z(log %)*1/\} so that the following hold:
L W] > (log ) C W
2. If 2 € W then &7 (z) € [, 2.
3. Wis \/g—evenly covered.

Now we consider cases.

Case 1: A > £~ 15005—33 é )
Case 2: A < t*15005_i(§) pe.

In case 1., let S be the set of all v/d-cubes which intersect W, and let X = Uges®-
Then ®4(x) is approximately equal to p for any z € X by (27) and the subsequent
discussion. It follows using Lemma 2.8 (and (40)) that we have a relation between tubes
from 7 and t-cubes satisfying (R) and

k
/ <I>l,’]~ < 5*C€t’65_21_4(_)%lu%|)(| + 5100|X| < 41000y | x|
X r

The second inequality here follows from the hypothesis of case 1 (and the fact that A > 1).
We conclude that there is a subset S; of S with proportional cardinality so that <I>’,’T <tA

on the union of the Si-cubes. Let Wi = W N Uaeg, A. Then |W;| is comparable to [W)|
in view of the even covering property (see (32), (33)). On the other hand, we can define
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a relation between plates m € P, and t-cubes via 7 ~ @ if 7(7) ~ Q. Now we proceed
as in the proof of Lemma 3.1: define two functions f* and h as follows. On each given

t-cube @, define f* and h via
FF=> I

ﬁepr
T~Q

h= ) fx

7767)7“
ThQ

Then f*+h = fp , and |h|is < ®%- and is therefore much less than (log %)’1)\ on Wi. So

| £*| must be 2 (log %)_1)\ on W1. The bound (34) follows from property (R), so (f,W))
localizes.

In case 2. we will show that fp satisfies (39). The functions ¥a fr (for fixed A and
variable € P,) are essentially orthogonal®. Accordingly

leafp I3 = 11 D ¢afl

TI'EPT

< > Ilvall (41)
WEPT

S D 1 falea
/WEPT

< / Op ba (42)

On the other hand the hypothesis of case 2 says that
ro< t—9000k5*iu3)\*5
< 9000k 55 )\ O (43)
For the four inequalities below, we use (42) and Lemma 2.9, then a simple calculation
based on the fact that ®4 is pointwise S 5_%, then (43) and finally the hypothesis (38):

lvafp I3 S 5%T/(I>T¢A

3By this we mean that (41) is valid, which follows in a standard way: roughly, for any pair of
incomparable 7’s, either the Fourier supports are disjoint or their z-supports are disjoint up to tails,

since the support of 122 has diameter < Nz. See also section 4 below.

36



ré?
4—9000 5% 1.\ 6
100053 43

AR AN AN

The lemma is proved. O

4. Properties of || ||pmic

The purpose of this section is to derive certain properties of the norms || ||,mic which
we need below. The arguments here are quite standard. What we do is (1) to track down
the behavior of || ||, i under various kinds of rescaling and (2) to relate || f||,.mic to
N-functions. In this section ¢ is arbitrary, i.e. may not be equal to 5.

The following “interpolation inequality” is essentially obvious:

2 1—2
1l mie S AFUZ 1 lloo mic: 2= 2 (44)

Next we estimate || f||pmic for N-functions; we will prove a converse to Lemma 4.1 in
Lemma 4.4 below.

Lemma 4.1 If f is an N-function with plate family P then (for p > 2)
_3 1
[ llpmic S (N72[P])» (45)
Proof By (44) it suffices to do the cases p = 2 and p = oo. The case p = 2 follows

from the essential orthogonality of the functions f; and the case p = oo follows by writing
down the equation

Zoxf=Y Eo*/fx
™

and observing that for fixed © the 7’s with Z¢ * f, # 0 must all be roughly parallel, and
therefore have bounded overlap. O

In Lemma 4.4 below we will prove a type of converse to Lemma 4.1.

If f is supported in Ty (C) then (for cubes Q of side t < 1) we let fo = (Yof) © ag.
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Lemma 4.2 ?5 is supported in T';x(C") where C' depends on C', and

(14l 2 el2
| fllpmic S TR FUZ I oo e (46)
provided p > 2. In addition, if t > N =3 then
1
1fallz S N7 flloo.mie (47)

Proof The Fourier support statement is clear using the compact Fourier support of
1. To prove (46), first consider the case p = 2, where (46) is basically the uncertainty
principle. Namely, fo = ¢ - (f o ag), with f/o?Q supported in the C't-neighborhood of
[n. A standard argument with Schur’s test shows that || folla < £2]|f 0 agllz = 1| f]|2-

We also have || foloomic S 72| f]lsomie since each sector of angular length (£N)~2
intersects O(t~2) sectors of angular length N—z. Using (44) we get

2 1,2
follpmic S I1follg 1 fallo fue
—(Lyl el
< T FUE N o e

as claimed.

To prove (47) we use that the Fourier supports of the functions g - (Ze * f) for fixed
() and varying © (© is an arc of angular length N _%) have bounded overlap in view of
the assumption ¢t > N ~%. Thus

Ifolls S D lv-(Ee*f)oaq)l
e
S D M e mic - 190113
©

1
< NESIE

00, mic

O

We will also need to use a rescaling argument with suitable Lorentz transformations
which we record next. Suppose that © is an arc of length p > N ~3 centered at a point
e € S'. Let w be a vector orthogonal to (e, 1) and (e, —1) and let Ty be the transformation
(a scalar multiple of a Lorentz transformation) mapping (e, 1) to p 2(e, 1), (e,—1) to
(e,—1), and w to p~lw. Let Ty" be the inverse (transpose).
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Lemma 4.3 Let © be an arc of S with angular length p, Z¢ an angular frequency
cutoff* corresponding to ©. Suppose that 4 is supported on the set {£ € Ty (1) : Zg(&) #
0}. Let v = uo Tg". Then ¢ is supported on T2y (C') for suitable C' and

[0llcomic S Nlwlloomic

Proof This follows from the fact that sectors of I'y of angular length N ~3 contained
in © correspond to sectors of I' 2y of angular width (p* N )% under Tg; see for example
[17] or [20] for further details regarding this sort of calculation. O

Lemma 4.4 Suppose that f is supported on I'y(A). Then f is the sum of at most

C' = Cy4 functions f each of which has a decomposition f = >\ Af), where the sum is
over dyadic A\ satistying

A 5 ||f||oo,mic (48)

Each fy is an N-function with N € [C'N, C'N], and

SN P S IAIE e (49)
A

for each fixed p € 2, 00).

Remark We have to allow several f’s, due to the fact that we have defined N-function
using a fixed choice of the constant ;. However, it is clear that this does not cause any
difficulties and we will ignore this technicality when Lemma 4.4 is applied, namely in the
proof of Lemma 4.6 and in the final step of the proof of Theorem 1.

Proof By the form of the statement we can assume that =g * f is nonzero for only one
choice of © (thus || f|lp.mic = || f]l), and since we are allowing several f’s it is also easy to
see that we can assume the support of f is contained in (say) N < [¢] < %N . We fix a
plate 7 so that the middle half of 7* contains the intersection of the region N < |¢] < %N
with the Fourier support of =¢. This is possible if the constant in the definition of 7*
was chosen large enough. Taking 1); = 9., we obtain a family of functions {¢;} with the
following properties:

40f the usual type as discussed in the introduction. Our notation here is a little inconsistent since ©
1
does not have length N~2.
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1. For each j ¢; = 7732- where 7; is supported in the dilation by a small factor a << 1
of the rectangle dual to 7 and centered at the origin.

2. The functions {1;} form a partition of unity.

3. |nj| < C¢y,; here {m;} runs through a tiling of R* by translates of 7.

We decompose f = > ;¥jf. Then we define

L= ) (50)
3illns fllso€lA2A]
It is clear that f) vanishes identically if A is large compared with [|f|[cc = || f||oc,mic-
Further, we evidently have |¢;f| < A¢r,, and the support of ﬂ is contained in the
dilation of 7* by a factor % + Ca, so the definition (50) exibits fy as an N-function. We
now make the estimate (49). By Bernstein’s inequality

* _3
15 f1E S V[l fll = 072l f113

Hence

3
S ONGEPALSY i flE S A
b\ J

as claimed. O

In practice we will need a “localized” version of Lemma 4.4. We first prove a sublemma.
Fixt € [CN~1 1]. Let {1} be the partition of unity associated to the covering by ¢-cubes
obtained from v by scaling as previously defined. In the next lemma we abuse notation a
bit by letting Z¢ be functions whose Fourier transforms agree on I'y(A) with an angular
partition of unity subordinate to a covering J involving I'y by arcs of angular length

1 1
(tN)~z (rather than N~z).

Lemma 4.5 With this notation, if f is supported in 'y (1) then the Fourier support of
(Yof) o ag is contained in the C-neighborhood of 'y and

D W) o aglh e S 1I1Z0 * fII (51)
Q eeJ
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Proof The Fourier support of ¢ is contained in a disc of size ¢! < (%) 2, Accordingly,
for each © € J the cardinality of the set of J7(©) ={0' € J: 3Q : Eox(Yg-Ze*f) # 0}
is bounded and similarly [{© : ©" € J(©)}| is bounded. We therefore have

DD Eex@ahlr £ DD > |Eex(bg-Ee x NI

eeJ @ © Q eeJ®
S 2> IveSer
Q o
S D e« Sl
@/
which gives (51) after rescaling. O

Lemma 4.6 Suppose that f is supported in Ty (1) and ||ul/somic = 1. Fix A > §%°.
Then for t € [ON~!, 1] we have the following®. Consider a decomposition of R* in t-cubes
Q as above. There is a value of \, € [C~16%\tz, C(tN)z] and a family of tN-functions
fo with plate families Pg, so that

1) A (log %)_C fraction of the set {|f| > A} is contained in Ugag' ({|fol > X*}).

2) > 0lPel < 5_06(%)1’(%)% Y o llZe * f||b for any given p > 2; here © runs over a
family of arcs of angular length (tN )*% as in Lemma 4.5.

3) [Pol < 07C(4)2(X)2 [ va |3 for each Q.

Proof Decompose f = ZQ Yo f where @) runs over t-cubes. We have a bound

(Vo f) ()] < 677 (1 + ¢t dist(x, Q) (52)

for each fixed M and all z, in view of the Schwartz decay of ¢ and the fact that || f|lec S
52 || flloo,mic- It follows in a standard way that for any given e

{If1 = A} CUg{lof] = C'aN} (53)
For each Q apply Lemma 4.4 at scale tN to (1gf) o ag, obtaining a decomposition®

(of) oag="Y _ hgy
h

SLemma 4.6 will be applied with t = Nz,
6See the remark after the statement of Lemma 4.4.
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Here the g,? are t N-functions and

S (@aef) e aqlomic
_1
S 13 2||f||oo,mic
1 (54)

using (48) and then (46). For each @, since A > §'° there are < log% values of h such

that |g2(z)| > 6"%X for some z. It follows that there is a value of h = h(Q) so that a
2 (log (15)—0 proportion of the set where |(1of) o ag| > 0\ is contained in the set where

|hg?] > 62X, We have [|g9|oc < (tN)2 192 | somic < (tN)z and therefore

h(tN)z > 6%\ (55)

We can pigeonhole to get a fixed value of h so that part 1) of the lemma holds with
fo =292 and A\, = 526%. Inequalities (54) and (55) imply that 622X < A" < (¢N)z. Tt
remains to estimate the cardinality of Pg, the plate family for g,?.

Applying (49) on scale tN and using that h = §°¢ )%‘ we have
3
Pal S (751\7)2(52‘E )" llWef) © aqllymic (56)

Summing over ) and using Lemma 4.5 we get
> |Pal St3(N): 526 )72 IBe xSl
Q

which is part 2. of the lemma. For 3., we just apply (56) with p = 2 and then use that
I(¥af) o aqlld = t7°(lvafl3. 0

5. Proof of Theorem 1

In this section we always let t = §.

We will carry out an induction argument of the following type. Fix p > 74 and suppose
that for functions with Fourier support in I'y (1) and with || f|leomic < 1 we have

/113
MV )P4

{IfI> A <67 (57)
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provided ¢ is small enough. Then, provided ¢ is small enough, for functions with Fourier
support in I'y(1) and with || f|ccmic <1 we also have

1] > Ay < o-r— Il (58)

Aoy

for any fixed 3 > (1 — ©)a.
We will see at the end of the section that once we establish (57)=(58) it is easy to

obtain Theorem 1.

As a preliminary to the proof of (57)=-(58) we make the following remarks.

1. Suppose that (57) holds for functions with Fourier support in I'y(1) and with
| flloomic < 1. Then, for any fixed C' (57) holds also for functions with Fourier support in
Iy (C) and with || f|lcomic < 1, provided we include a constant factor A(C') on the right
hand side. This is because the dilation of I'y(C') by a small fixed constant factor will be
covered by a bounded number of sets of the form I'(1). This remark allows us to ignore
the constant factors arising in some of the previous lemmas, e.g. Lemmas 4.3 and 4.4.

2. If (57) holds, then (for the same class of f) the corresponding strong type estimates

1

50 0% E|£3 (59)

1f]15 < log

also hold. This follows since there are only logarithmically many relevant dyadic values
1

for A; | f(z)] is necessarily less than 6~ 2, and on the other hand (59) with f replaced by

(say) min(] f], (Vi) is trivial.

We now prove a lemma.

Lemma 5.1 Fix p and o and assume we know (57). Let f be Fourier-supported in I'y (1)
and such that || f|lcomic = 1. Then for any A > 6'° there is a value A, € (/\5%“6, 5‘i), and
a collection of Nz-functions {fa} so that

1. A (log +) ¢ fraction of {|f| > A} is contained in Uaax' ({|fa] > N*}).
2. The following estimates hold for any given € > 0:

A

P <6 (50 a3 (60)
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2
STIP(fa) <507 5 ||J;||21
A ()\—*)4(>\—*54)p74

(61)

Proof We apply Lemma 4.6 with t = N ~3. The decomposition there satisfies 1., and
it satisfies the estimate (60) (for this, apply 3. of Lemma 4.6 with ¢ = N~2) and also, by
2. of Lemma 4.5, the estimate

0 A — ,
Y IP(fa)l < 570657(7)” > IZe* fIIp (62)
A ©

where © runs over a family of N~i-arcs. We now show that (62) and the inductive
hypothesis (57) imply (61).

Namely, for each © a suitable Lorentz rescaling of Ze f has Fourier support in ' 1 ()
and behaves as described by Lemma 4.3. So we can apply the inductive hypothesis (57)
on scale N2. We conclude by (59) that

|Ze+ fllp < 67967567 %||Z0 + fII3

Inserting this bound into (62) we obtain

STIP(a)l < 6 5 Yo lIZ6 * £113
A (A)4(%5Z)p—4

)\*
~ 5—065—%5—% ”f”%
1
(F)(R0)
as claimed. O

Lemma 5.2 Assume (57) for 6 small enough and that f is an N-function with associated
family of plates P satisfying (35). Then (58) holds (for small §) if 3 > (1 — ¢)a, provided
we replace || f||2 on the right hand side with 5%|73|.

Proof Let W be the set where |f| > X. Apply Lemma 3.1 with ¢ = §%. Thus
IW| < (log %)C| Ug Wql|, with Wg = {z € Q : |fo(z)| > (log %)*C/\}, where fo are
subfunctions of f and (34) holds.

Now, for each @, apply the inductive hypothesis (57) to go o (Vofg) o ag with N
replaced by ¢tN, and A replaced by (log 5)“X. We have ||gql|ocmic < 72 by Lemma 4.2

~J
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so we obtain

2 Wol < {lgq
N2\ - —p
(5) (5) taaltciulsell (Aoz )-0)

top ot n o
< (DF25) Y golE\log )70

= (log §)“"6~~E 7 AP gg 13

> (log 5)7“A}|

IN

On the other hand, we have ||gol2 < ¢~2||fol|2 by (46) with p = 2, and || fol2 < 62|Pg
by (45). Accordingly

o3
> lgalls < ¢7%5%(log 5)°IP|
Q
by (34). It follows that
W < (og 3 gl
Q

< (log §)%06 E AT Y " gol3
Q
< (logd)Co 5 B DN 53 P

The lemma follows since ¢t = §¢°. |

The next step is

Lemma 5.3 Assume (57) for ¢ small enough and that f is an N-function satisfying
(38). Then (58) holds (for small §) if 8 > (1 — £)a, provided we replace ||f||3 on the

right hand side with 6% |P(f)].

The proof of this is similar to the proof of Lemma 5.2, except we use Lemma 3.2 instead
of Lemma 3.1, and obtain the localization effect on one of two scales, corresponding to
the two possibilities in Lemma 3.2.

Proof of Lemma 5.3 By assumption Lemma 3.2 is applicable to the set W = {| f| > A}.
If (f, W) localizes, then we obtain (58) for any 5 > (1 — €)a by the proof of Lemma 5.2,
since the hypothesis (35) there was used only to guarantee the localization property.
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On the other hand suppose we are in the second case of Lemma 3.2. Thus we have

a subfunction f* of f and a subset W* C W with [W*| > (log ) =W so that |f*] >
(log 3) “X on W*, and such that

[oaf |3 < 100523 (63)

for each §2-cube A.
Now apply Lemma 5.1 to f.. The resulting functions fa and parameter A, satisty

L A{If1 = M} < (log 5)°| Ua ax' ({Ifal = A" D)1.
9. |P(fA)| < 5706t1000)\i
_ _9 _a 2
3 LalPUa)l <0700 (A)zx(lgiﬁ)m
A* A*

Namely, 1. and 3. are immediate from 1. of lemma 5.1 and from (61). To obtain 2.,
we start from (60) and then substitute in (63); thus,

e Moo .
LN e S R (O F
< 5~ C’E();\) 5—— t10005 )\3

< 5—C€t1000)\2

since \ < (5_%6)\*.
The fa’s are v/ N-functions, and property 2. implies that they satisfy (35) with A,
and VN replacing A and N. Accordingly by Lemma 5.2

S3[P(fa)]

fA>)\ <5 0657—1 €0
1fal =AM s

(64)
Scale back down and sum over A. This gives

{If1= A < (log 252|{|fA|>A}|

5 0652 2571(1 €0)x 5 1P (fa)l
AL(N 67 )4

IN
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LI R i
NS4 (R)H(R00)

* *

< 57065%57%(1760)04

3
< §CEs5—(t(1—€0)a+2) . 02|P]

X (OWap

The four inequalities followed respectively from property 1., from (64), from property 3.,
and from Lemma 4.1 with p = 2. The lemma is proved. O

Proof of Theorem 1 As discussed at the beginning of the section the main step is to
show that if (57) is true for functions Fourier supported in some” I'n (1) with || f||somic <

1 then so is (58). Fix then a function f Fourier supported in some I'y(1) and with

We observe to begin with that (58) follows from Tchebyshev’s inequality if

MWV <1

or equivalently if we do not have
1 1
N> 2t (65)

We will therefore assume that (65) holds.
Apply Lemma 5.1 to f. The resulting functions fa satisfy

L {If] 2 A S (log 5)°| Ua ax' ({[fal = X'}
2. |P(fa)| < 5CE41000155 \9,

o

—ces-? s-a |IfI3
b RalPUa)l < 7o 0 (A)AL(A}%)H'
A* A*
Namely, 1. and 3. follow immediately from 1. in Lemma 5.1 and from (61). We now
verify 2. Namely, if A is a v/d-disc then by (47) and rescaling we have

lafllz <0
Hence by (60) and then (65) we have
A
P(fa)l < §C(5)%6 5
< 6O (66)

7N is always taken sufficiently large.
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We also have

A > 605 (67)
because A, > 69653 and \ satisfies (65). Since p > 74, (67) implies that
§Ti I\ < gL 5 )\

for a fixed k = K, > 0. Combining this inequality with (66) proves 2. provided ¢, (and of
course €) have been chosen small enough.

We may therefore apply Lemma 5.3 to the fa’s replacing 6 with v/ and A with \,,
obtaining that if v > (1 — £)a then

01| P(fa)]

A 53— 2L
(sl 2 ) <873

We now repeat the last part of the proof of Lemma 5.3. Scaling back down and summing
over A gives

{If1= A < (log) 25 {Ifal = A}

5= 065 25—— 5 |P fA)|
N )\4)\5)

VAN

< 63

< 5—065—%(7+a) . ”f”%

=~ )\4(/\\/5)1,_4

Thus (58) holds for any 8 > (1 — £)a, as was to be proved.

We conclude by iterating (57)= (58) that (57) holds for arbitrary o > 0 provided
| flloomic < 1. It remains to pass from this estimate to Theorem 1. It is not hard to
see using the partition of unity {¢(z — j)}jEZe, and estimates like (52) that it suffices to
prove Theorem 1 locally; we omit the details of this reduction. Assume then that f is
Fourier-supported in I'y (1) and that || f]|pmie < 1, and let Qo be the unit cube; we need
to show that || f||zr(gy <6 2771

Using Lemma 4.4 we decompose f = >y Afy where || f)[lccmic S 1 and (by Lemma

4.1) [[£xlI3 S A7*; the sum is over dyadic values of A bounded above by a negative power
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of §. By (57), for any fixed € > 0 we have

1

[y S 6766 WA
for each . In view of the bound on ), we can sum over (dyadic) A > 6'%°, obtaining

1
IS Ayl S 5 € log ()6~ H)
)\>5100 5

On the other hand, the function

> M

A<t

is clearly bounded pointwise by 6°°, and therefore has a similar bound in L? norm on the
unit cube. The proof is complete. ]

Remark In the preceding argument we have changed scales from & to /8 twice; once
in the final argument, and once in the proof of Lemma 5.3. This was necessary in order
to obtain Theorem 1 for some p. The reader will be able to see this by going through the
logic setting A = 5_%, since in this case it is only the condition (38) that can be obtained
by a single rescaling, and not the condition (35).

6. Proofs of the corollaries

In this section I' is redefined to be the full (rather than forward) light cone and
similarly with Iy etc. It is easy to see that Theorem 1 remains true, since the statement
is invariant under complex conjugation which interchanges the forward and backward
cones on the Fourier side. Let y : R — R be a fixed Schwartz function which is nonzero
on the interval [1, 2] and whose Fourier transform has compact support. Let n be a radial
Schwartz function in R? whose Fourier transform is supported in % < [€] € 2 and such

that ¢
Zﬁ(Q—n)

n>0

is equal to 1 outside a compact set. Define n,(x) = 2*"n(2"z). We start with the following
observation.
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Lemma 6.1 Assume that u is a solution of the wave equation,
0

Assume that the supports of f and § are contained in the annulus N < €] < 2N. Let
V(z,t) = n, * (x(t)u(z,t)), where the convolution is in the space variables. Then the
support of G is contained in 'y (C), N =27, and (for p > 2)

IV llpmic S £ 1lp + N Mgl (69)

Proof The Fourier support statement follows since the Fourier support of u is contained
in 'y and x has compact support. The bound (69) also differs only notationally from
known bounds. We give the argument assuming g = 0. It suffices to prove (69) when
p = 00, since it is obvious when p = 2. Let A be a smooth cutoff to a sector of angular
width N2 and = the inverse Fourier transform of A. Then

= Vi) = [ X045 [ e < costamle)) fty)dyd

so it suffices to show that for fixed ¢ and y the L!(dx) norm of the function

B(z) = / A(g)ﬁ(éﬂ)e2m<(m—y)-£+t|s|)d£

is bounded by a constant. However, the latter statement is well known (cf. [11]) and
follows from stationary phase. U

Proof of Corollary 2 For the local smoothing statement, we apply Theorem 1 to the
function V' in Lemma 6.1 obtaining

72 Oc(@u, ), < Ce2™ =5 fll, +27"|gll)

hence by the Fourier support of V, if a > % — % then for some e we also have

170 % (x(@u(@, )l £ 27" (IS llpa + l9llp.a-1)

We then sum over n to get the result.
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For the cone multiplier statement, it suffices to show that if pg is a smooth cutoff (with
the natural bounds) to the d-neighborhood of T'y then ||ps * fll, < 67| f|l, assuming the

indicated conditions on p and a. Rescaling, it suffices to show that if Ry is a smooth
cutoff to the 1-neighborhood of I'y then

IR fllo S NI (70)
However, we have || Ry * fllpmic S || fllp, since Zg * f for fixed © is obtained from f by
convolution with a function with bounded L' norm, and one can interpolate with L?. So

(70) follows from Theorem 1. O

In principle Corollary 3 follows from Theorem 1 using the relation between circular
means and cone Fourier transforms or solutions of the wave equation; see [11] and [13].
However, there is no reference for the exact statement that we need so we give the ar-
gument. Let o; be normalized length measure on the circle of radius ¢. We will use the
asymptotics .
€

We always assume 1 < ¢ < 2; thus this asymptotics is uniform in ¢ as || — co. We define
o} : R* = R by

51(€) = 2v/2m ()% cos(2mlé] — 1) + O(1g] %) (71)

oy = (2v 27T)*1t*%77n * Oy

Lemma 6.2 Let n € Z* and let N = 2". Let f be a function in R? with ||f|je = 1,
and define u : R® — R by

u(z,t) = x(t)o} * f(z)

Then, when 1 <t < 2, we have u = v + w where
1. v is supported in I'y(C') and v satisfies the estimates
1
[V lloomic S N2 (72)

oz < N1 (73)
2 |[wle £ N7 £]2
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Proof Using the asymptotics (71) we express

FHE) = A SNe S cos(2ntle] = T+ (€)

where .
19tllz2ae) S N2 (74)

for each fixed t. Define w(x,t) = x(¢)g: * f(x) and v = v — w. Part 2. of the lemma
follows from (74) by Plancherel and Cauchy-Schwartz.
To prove 1. we express v as the real part of the function

V(z,t) = e "ix(t) / ﬁ(%ﬂa%ewzf*t'ﬁ“f(é)dg

therefore ¢
V(e ) = e IR(T ~ €Dl 2 f(©)

which is clearly supported in I'y(C'), and is also clearly bounded by N _%| f (&)], which
proves the estimate (73). It remains to prove (72). Let A be a smooth cutoff to a sector
of angular width N —7 and = the inverse Fourier transform of A. Then

=V t) = [ Ta0A©) [al5lel e ey dyag

so it suffices to show that for fixed ¢ and y the L!(dx) norm of the function
B(z) = / A(@ﬁ(%)|5|—%e%i((m—”fﬂ'ﬁ')d&

is < N~2. However, the latter estimate is the same estimate from [11] that was used in
the proof of Lemma 6.1. The lemma follows. O

Proof of Corollary 3 We can assume that the set F' of Corollary 2 is contained in the
region 1 <t < 2 and then also that the set E is contained in a large fixed disc.

We will use the notation in Lemma 6.1. Let f be a (measurable) function in R? with
|flle < 1. Assume {x : f(z) # 0} C E. We will show first that the three dimensional
Lebesgue measure of

Yy {(w 1) € R x [1,2] « |0} # f(x)] > A}
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is < CeA P N=2+€| | provided that X is large compared with N2,
Namely, there is a function F' : R* — R with the following properties:

1. suppE € Tn(0)
2. | Flloomic < N72 and ||Fly < N=z|E]z.

~Y

3. 1f (w,1) € Yy, then |F(x, )| > 2.

This is clear by setting F' equal to the function v in Lemma 6.2; we just note that 3.
follows from the estimate in 2. of the lemma since A >> N~z and E is contained in a
large fixed disc. It follows by (44) that

| F llpmic S N3|E]
hence by Theorem 1, if p = 75 and ¢ > 0 then

|71, < N7 B
Using Tchebyshev’s inequality and 3. we get

Y\l S ATPNTHE|

as claimed. Taking now f = yg we obtain the following:

For any € > 0 there is > 0 such that

1 1
(0 € R x (2 I reex(o)] 2 gV <N (0
We can convert this to an entropy estimate on scale § = N~1:
For any € > 0 there is n > 0 such that
1
5 ({00 € R X 3.2 b ov s xelo) 2 N7 ) < NEL (19

Namely, since |7, * 01 * XE|lco S 1, (36) shows that if |7, * o4 xg(x)] > N7 then
|1 % o % XE(Y)| > %N’” for all y belonging to the %N’(H”)—disc centered at z. This

shows that (75) implies (76).

53



Now let a be a small positive number, let U be an open set with measure < a,
K C R? x [1,2] a set such that each circle C(x,t), (z,t) € K, intersects U in measure
>C>0. If (x,t) € K then ) |n, * o, x xu(z)| 2 1, so for some n we have

|7 % 04 % xv(2)| 22 (77)

Notice that (77) cannot hold for any z if n is too small, i.e. if n7227" >> a. For the
remaining values of n, we have shown above that the set where (77) holds has 27"-entropy
< 2046n B < 2046n - We now have a covering of K by a family of discs of dyadic radius
27" satisfying 27"n "2 < a, and involving less than 29" discs of any given radius 27",

If F has Lebesgue measure zero then we can apply the preceding to an arbitrarily
small open neighborhood U of E. We conclude that any set in R? x R consisting of circles
which intersect £ in outer measure > C' must have Hausdorff 1 + e-dimensional measure
zero. Letting C' — 0 we obtain the result. U

Theorem 1 and its proof also imply various “LP — L? inequalities for the wave equation
relative to fractal measures” which generalize the Strichartz inequality as well as the L?
estimate proved in [18]. To motivate this recall for example the well-known Strichartz
inequality into L?(LS°): for solutions of (68), locally in time we have

lullzezeey S N lw2s + llgllwze (78)

provided % <s<lg< ﬁ This can be considered as an L? estimate

lull Loy S 1 llwe + llgllwzs (79)

for u with respect to a measure p whose t-projections are Lebesgue and whose marginals
are Dirac measures, which is a one dimensional measure. A similar interpretation is
valid for the result of [18]. One can ask for analogues of all these inequalities in general
dimension «, i.e. estimates from L? Sobolev spaces to L?(u) for the solution of O with the
right dependence on the dimensionality of p. For general o and p this appears hard; when
a = 3 and p # 2 it is essentially the local smoothing conjecture. The following result
is satisfactory only when o < 1; when « is large (i.e. in case (i)) it is a minor variant
on Theorem 1 and the value of p is far from sharp. We refer also to [9] for a discussion
concerning estimates of this type.

Proposition 6.1 Suppose that 1 be a measure in R® supported in the unit disc and
w(D(x,r)) < r* for all discs D(z,7) of radius r < 1. Then for functions with Fourier
support in ['y(1)

* 1
[ llzegey S N J[ullpmie (80)
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provided that o > I*Ta and one of the following is true: (i) p > 77 — «a or (ii) p > 3 and
a <1+ ¢,0, where ¢, > 0 is a small (computable) constant.

We will use induction on N to show that for some fixed positive

it uto) 2 A < 5 (81)

for functions with Fourier support in I'y(1). Since there are only logarithmically many
relevant dyadic values for A this weak type estimate implies (80).

Assume that (81) has been proved on scales much less than N and fix u. Suppose at
first that it v an N-function with plate family P. In this case, we will show that

07| Ps*
T |u(@)| > A < ———— 82
pl{z - Ju(@)] = A} < Vil (82)
Here ( is a fixed positive number depending on a and p.

We first look at what follows formally from Theorem 1. Namely, if ¢ > 74 then
Theorem 1 and Lemma 4.1 imply for any given 7 > 0 that

o s fu(@)] = A} S 670°(AV6) 7| P|6?

The bound (36) implies that {|u] > A} behaves essentially like a collection of 5% \-dliscs.
Using the dimension assumption on p it therefore follows that

pfe su(@) =N} S 62N OWE) | Pls?

~Y

= 6T T (AWVE) TR Plst (83)

In case (i), this is clearly smaller that the right hand side of (82), so (82) is proved
(without an induction argument) in that case.

In case (ii), we need to combine (83) with an induction argument based on the lo-
calization property in Lemma 3.1. There is a technical issue that arises, namely that we
must redefine “localization” so that the measure in 2. of the definition is p rather than
Lebesgue measure. However, it is easy to see that Lemma 3.1 remains valid with this
change. We now distinguish two cases.

1. (u, W) doesn’t localize (to scale t = §°).
2. (u, W) localizes.
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In case 1., by Lemma 3.1 we have |P| > t“)?. Fix a sufficiently small number 7 > 0.

If A\ < 6" % then provided the numbers €, 5 and ¢ have been chosen small enough the
estimate (82) follows since the right hand side of (82) is greater than 1. On the other
hand, if A > 6”77 then the bound (83) implies (82).

It remains to consider case 2. In this case we let ug and Pg be as in the definition®
of localization. We consider the rescalings

(Yqug) © ag

Fix @. Using Lemma 4.2 and then Lemma 4.1, we see that (¢¥qug) o ag is Fourier
supported in [';x(C') and

= lug3llug % e
= E+D52 Py (84)

[ (Yquq) 0 agll} e <
<

Define a new measure v by rescaling the restriction of p to @ and then multiplying by
17, i.e

dv(z) = 1o (w)dp(age)
where yq is the indicator function of the unit cube. Then v is supported in the unit cube

and satisfies v(D(z, 7)) < r*. We apply the inductive hypothesis on scale N, and then
substitute in the bound (84). This gives

(2)=77 || ($ouq) © ag (@) e

B

()7t 053 g |

(/2

Using that ¢ is bounded away from zero on () and undoing the rescaling we arrive

v({z :|(Youe) o ag(x)| = A}) S

S

at .
()71 [Py

/2y

8To avoid any possible confusion we note that u here plays the role of f in that definition.

p{z € Q :fug(z)| = A}) St°
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Summing over ) gives

(7053 Pg|

/2y

By the (current) definition of the localization property we then have

> ul{r € Q: lug(x)| = A}) < (log 5)°t°
Q

plaulz) =0} S (log )9 plfr € Q: lug(x)] = A})
Q

()7t B3 Py
(W

The exponent of ¢ here is a + po — 1, which is positive. Since t = 6, it follows that
(82) holds provided ¢ has been chosen less than (a + po — 1)€.

Now we can simply repeat the last steps in the proof of Theorem 1, decomposing a
general function as a sum of N-functions and applying (82) to each. The conclusion (81)
follows provided k has been chosen less than (. O

< (log5)“t”

Proposition 6.1 can be used to obtain various more explicit estimates. Let u be a
solution of the wave equation (68). Using Lemma 6.1 and Proposition 6.1 one easily gets

lullzry S 1 1p 40 4 1191l 110 (85)

with the same conditions on o, p and p. In particular this gives

Corollary 6.1 Assume p > 3. Consider a solution of (68). Then for measures with
compact support and satisfying p(D(z, 7)) < r* we have

lallzogo < 1F 13 + gl -y (86)

provided a > 1, and

lullzog S U3 s + gl s 1o

provided a <1 and o > I’Ta.
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The proof is as indicated above. In particular, we have

lullzzazy S 171 sse + ol s e

for any € > 0 by the case a = 1 and finite propagation speed, so Corollary 6.1 includes
the result of [18]. Note also that (86) gives an L? version of Corollary 3.

Remark It is also possible to derive Strichartz type estimates from Proposition 6.1,
e.g. the following statement: suppose s € (3,1] and o > 4(1 — s). Then, for any ¢ < 12

1-s?
[ullzagny S [1Fllwas 4 [lgllwze- (87)

provided g is a measure with fixed compact support and with u(D(z,r)) < r®. This
follows by decomposing u in N-functions as in Lemma 4.4 and applying Proposition 6.1
in an appropriate way. We omit the argument since it appears to us that (87) would also
follow from (78) using a suitable version of the Marstrand projection theorem. However,
it is possible that issues of this type could be of some interest when s < %.
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